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SUMMARY 

The  idea was to consider the development of networks that responded to the requirement of 
increased connectivity between vertices that experience correlated activity in some sense – this is 
the so-called Hebbian response .  The paradigm for type of behaviour is found in neural networks 
where correlated behaviour usually results in improved connectivity between the  neural centres 
for associated activity.   
Our investigations have followed this principle in constructing network algorithms which 
emphasize connectivity response which produces graphs which are acutely prone to cascade 
breakdown.    The networks are designed to breakdown catastrophically by cascade breakdowns.  
These networks can be characterized in terms of node degree distribution.  The deliverable was 
basically a theoretical investigation.  But the ability to characterize these graphs gives the potential 
for finding a measure of how much real networks differ from these extreme contructs .  This would 
be a further tool in characterising or measuring the vulnerability of real networks to cascade 
breakdown.  
It is quite well established that overloading transmission lines in transport or energy networks can 
trigger a cascade of failures resulting in a critical breakdown. It is one of the main questions of this 
deliverable to investigate which features of the connectivity and of the dynamics are the cause for 
such a behaviour, and ultimately to propose countermeasures which can be employed to prevent 
such catastrophes. 
In particular, we focus on generating and identifying structures which support and sustain 
cascading breakdown of complex infrastructure networks. 
The main idea for this purpose is to follow a cascading breakdown in reverse, thus generating a 
critical infrastructure network, and finally to identify its topological and dynamical characteristics. 
 
A standard approach to simulate cascading breakdowns consists in identifying critical connections 
which suffer from overload and closing down such critical links. Redistribution of the loads may 
result in additional critical transmission lines causing further overload and resulting in a cascading 
breakdown. Although one can envisage other more dynamical approaches, e.g., by employing 
power flow models or master equations on evolving graphs we stay here with the aforementioned 
simpler topological set up. As a collaborative effort between mathematics and electronic 
engineering at QMUL we have implemented such an idea and developed a growth algorithm 
which generates networks showing critical failure by running cascading breakdowns in reverse. 
 
 
Dissemination: 
 
The contribution to D3.4 have evolved over the last few years and have finally resulted in two 
manuscripts which have been already published in international peer reviewed journals (annex 
1,2) and another preprint which summarises the concept (annex 3). 
 
 
Impact: 
 
The identification of mechanisms resulting in cascading breakdowns and the development of 
countermeasures have an obvious technological and economic relevance. The first preliminary 
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steps were motivated by studies in telecommunication and electricity networks and are now going 
to be applied in the context of other infrastructure networks such as gas and transport. We expect 
considerable benefit from a combination of the results of D3.3 and D3.4 to inform policy makers 
about strategies to improve resilience of infrastructure networks. 
 
 
 
Annex 1 
 
M. Woolf, Z. Huang, and R. Mondragon, Building catastrophes: networks designed to fail by 
avalanche-like breakdown, New J. Phys. 9 (2007) 174 
 
The paper was prepared by the department of electronic engineering, QMUL 
 
 
Annex 2 
 
R. Mondragon, Topological modelling of large networks, Phil. Trans. Roy. Soc. A (2008) 366, 1931-
1940. 
 
The paper was prepared by the department of electronic engineering, QMUL 
 
 
Annex 3 
 
Z. Huang and R. Mondragon, Fragile networks 
 
The manuscript "Fragile networks" was prepared by the department of electronic engineering, 
QMUL. 
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Abstract. We present a simple method for constructing networks designed to
fail catastrophically due to an avalanche-like breakdown. Our method simulates
an avalanche in reverse, building a network designed to fail by avalanche-like
breakdown. Some restrictions are imposed on the output flow rates of the nodes.
An expression for the critical output flow rate of a node is derived. Nodes in
the network are considered to have failed when their output flow rate exceeds
this value. Two cases are considered: networks where total flow in the network
increases with network size; and networks where the total flow is constant. We also
consider networks in which nodes have weighted output flow rates. The topology
of the generated networks is studied, and it is seen that networks that are almost
homogeneous in node degree may still fail catastrophically. Finally we present
some possible extensions to the method.
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1. Introduction

Man-made complex networks [1]–[3] such as the Internet, power transmission grids and
telephone systems are susceptible to catastrophic failures in which the entire network ceases
to function [4]–[6]. The most common cause of a catastrophic failure is an avalanche-like
breakdown. This can result from the failure of a single node in a network in which nodes are
sensitive to overloading. Redistribution of the load of this failed node over the network may cause
other nodes to fail, triggering an avalanche-like event in which node failures propagate through
the network. The entire network may in the end fragment into disconnected subnetworks.
Networks with heterogenous node degree distribution, such as scale-free networks [7], are
much more likely to suffer this type of event [8]. This is because a small subset of core nodes
will be highly connected and handle much of the traffic in a scale-free network. If one of these
heavily loaded core nodes ceases to function, either through malicious attack or random failure,
it will have a large impact on other nodes in the network, making subsequent failures very
likely. However, similar catastrophic failures are possible in networks with more homogeneous
degree distributions. As we show in this paper, if the network degree distribution has just a small
amount of heterogeneity then avalanche-like breakdowns are possible when all nodes are close
to their failure load. Similar behaviour has been seen in social networks [6]. In the theoretical
case of a completely homogeneous network in which all nodes are close to their maximum load,
failure of a single node could cause the whole network to collapse in a single stage.

In this paper, we are concerned with transport networks in which particles of information (we
shall call them packets in this paper) are transported through the network. Packet data networks
such as the Internet are the most familiar examples of this, but the model can also be applied to
road networks [9] and social acquaintance networks [10]. The most obvious approach to routing
packets through a network, and the one used in the Internet, is to pass them through the shortest
path. In Internet routing weights are placed on links according to different metrics. These weights
are used to calculate shortest paths and generate routing tables [11, 12]. Much work has been done
in finding better alternatives to shortest path routing [13]–[17]. All show considerable improve-
ments in carrying capacity, that is the load that can be carried by the network before jamming
occurs. However, as Sreenivasan et al [18] showed, there is a limit to how much improvement
may be made in this way.All heavily loaded networks are in the end vulnerable to cascade failure.
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In [6, 8], [19]–[21], cascading breakdown in static networks has been studied. In
[6, 8, 20, 21], the method is to overload one or more nodes in a pre-existing network and
study the resulting cascade. Holme and Kim [19] have a slightly different approach, evolving a
scale-free network until cascade failure occurs due to the increasing load in the network. (Load
here is defined by the topological property betweenness centrality, defined in section 2.1 below.)
In [19, 20], breakdown is simulated by computer, whereas [6, 8, 21] use mathematical models.
One difficulty of the former approach is that this type of simulation is very computationally
demanding, which imposes a limit on the size of network that can be modelled. This makes it
difficult to find out how well the mathematical models scale with network size. In this paper,
we approach the study of cascading failure from another direction. We build networks in such
a way as to ensure their breakdown. In essence we follow the cascading breakdown in reverse.
By doing this we hope to better understand the dynamics of the process. This approach is also
less computationally demanding and will therefore allow the simulation of larger networks. The
model can be easily extended to real-world networks.

2. Preliminaries

2.1. Definitions and network measures

It is conventional to represent a complex network by an undirected graph, G(V, E). Here V is
the set of vertices of the graph representing the nodes of the network; E is the set of edges
representing the links of the network. In a packet data network, for example, the vertices would
represent routers or hosts; the edges data links. Edges are unweighted and there are no self-edges
or duplicate edges between vertices. We assume that flows between source and destination all
follow the shortest possible path (the geodesic path). The average shortest path length,

�̄ = 1

N(N − 1)

∑

s∈V

∑

d �=s∈V

�s,d, (1)

where �s,d is the length of the shortest path between source, s, and destination, d. N is the number
of nodes in the network.

As in [13, 14, 19, 21] and others, we chose B(v), the vertex betweenness centrality [22, 25]
(often abbreviated to ‘betweenness’) to give a measure of the load on a node based purely on the
topology of the network. If one imagines that for a single time step one packet of information is
passed between each node pair in the network, the route taken always being the shortest path,
then the load on any given node would be equivalent to the number of shortest paths passing
through that node.2 This is the basis of betweenness. The proportion of shortest paths from s to
d containing vertex v, ps,d(v) = σsd(v; s, d )/σsd(s, d ) where σsd(s, d ) is the number of shortest
paths between s and d, and σsd(v; s, d) is the number of shortest paths between s and d that pass

2 If each node pair had only one shortest path between them this would be exactly the case. In fact, since there may
be more than one path of the shortest length between a given node pair, the fraction of those shortest paths passing
through v are summed for that pair when calculating B(v).
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through node v. The betweenness of node v is then

B(v) =
∑

v∈V

∑

d �=s∈V,d �=v

ps,d(v). (2)

It should be noted that our definition of B(v) is slightly different from others. In Freeman’s
original definition [22], node v is not counted as either source or destination when summing
values of ps,d(v) in (2). Other authors do include v as source or destination [10, 23]. In our case
we would like to include single hop routes (routes with no intervening nodes) and allow packets
to leave the network immediately on reaching their destination. Hence when summing in (2),
v can be the source, but not the destination.

A property of the betweenness centrality as defined here is that3

∑

v∈V

B(v) =
∑

s,d

�s,d = N(N − 1)�̄. (3)

2.2. Load and congestion at a node

The average information flow arriving at node v is [24, 26, 27]

λv = F(�, N )B(v)

N(N − 1)
, (4)

where F(�, N ) is the flow generated per unit time by the whole network. The flow is a function
of the rate of packet production at a node, �, and network size, N. If µv is the output flow, then
the node will get congested if its input flow is greater than its output flow, λv � µv. The onset of
congestion therefore occurs at the critical value:

λ∗
v = µv = F(�, N )B(v)

N(N − 1)
. (5)

We consider two cases:

1. Each node v produces packets at a rate �v = �, distributed evenly between the N − 1
destinations. In this case total flow in the network increases with network size. The total
flow in the network is F(�, N) = N�. If node v is the first to get congested in the network,
it follows from (5) that this will occur when the packet production rate reaches the critical
value [24]:

�∗ = µv(N − 1)

B(v)
. (6)

In terms of betweenness, congestion will occur when (see [13, 14, 17, 18, 26])

B(v) = µv(N − 1)

�∗ . (7)

3 This can be understood as performing the sum on the left-hand side of (3) in a different order: taking each node
pair in the network and counting which betweennesses they contribute to.
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2. Only K of the nodes produce packets (all at rate �) distributing flow evenly amongst the
N − 1 possible destination nodes. The total flow in the network is then F(�, N) = K�

where K is a constant. That is, total flow in the network is independent of network size. The
average arrival rate of packets at node v is

λv = K�

N(N − 1)
B(v). (8)

The corresponding critical load and betweenness for node v are:

�∗ = µvN(N − 1)

B(v)K
. (9)

and

B(v) = µvN(N − 1)

�∗K
. (10)

2.3. Avalanches and betweenness

An avalanche in one of our networks would occur in the following way. When a node became
congested all edges connected to that node would be removed. After removal of this node and
its edges, loads would be recalculated. The load on other nodes might increase sufficiently for
them to also get congested: these nodes also would be removed from the network and loads
would again be recalculated. The process would continue until no nodes in the network were
overloaded.

Considering the first case of section 2.2 in which the total flow in the network increases
as the network grows: equation (7) holds, that is node v will get congested when B(v) =
(µv(N − 1))/�∗. After node v and its links are removed, node w will become congested when
B′(w) = (µw(N ′ − 1))/�∗, where B′(w) is the betweenness of node w in the reduced network
and N ′ is the size of the reduced network. Hence B(v) and B′(w) must satisfy

B′(w) = (N ′ − 1)

(N − 1)

µw

µv

B(v). (11)

If we consider the case µv = 1 for all v, then a lower bound for the betweenness of the
network is obtained from (3). In this case the vertex with the highest critical load is the vertex
with the largest betweenness, so if the average betweenness in the network is given by

1

N

∑

v∈V

B(v) = (N − 1)�̄ (12)

and the maximum betweenness, Bmax = max{B(v), v ∈ V}, then we have a lower bound to Bmax

[19]: Bmax � (N − 1)�̄.
From (7) we can obtain an upper bound to the maximum betweenness by noticing that the

vertex with the largest betweenness will be congested if its load is greater than or equal to �∗,
in this case Bmax � (N − 1)/�∗.
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Level n

Level n + 1

Figure 1. Building the network. The grey vertices are the new nodes introduced at
step n + 1. The square vertices are the nodes that will get congested and removed
when the avalanche occurs. Note that all connections from the new nodes to the
nodes of stage n are made via the grey square vertex.

A similar argument may be applied in the second case of section 2.2. Here the total flow is
constant, independent of network size. The betweennesses in the original and reduced networks
are related by

B′(w) = N ′(N ′ − 1)

N(N − 1)

µw

µv

B(v). (13)

As before, if we take µv = 1 for nodes v, then (N − 1)�̄ � Bmax � N(N − 1)/(K�∗).

3. Building catastrophes

To build a catastrophic network we follow the avalanche process in reverse. Starting with one
or more small core networks we build the network a node at a time. The process is illustrated
in figure 1. Square nodes are congestion nodes, required to fail in the avalanche. n of these
congestion nodes have been added to the network at level n. At level n + 1 the (n + 1)th node is
added—the grey square. To satisfy the conditions for an avalanche we require this node to fail.
The condition for this is �∗

n+1 � �∗
n, where �∗

n and �∗
n+1 are the critical packet production rates

for the network as it is at level n and at level n + 1. For our purposes we want �∗
n+1 ≈ �∗

n. Apart
from changing �n, we can affect the load either by adding links between the new node (grey
square) and the original network or by adding a new node that connects with the new congestion
node and/or any of the other nodes (grey circles) introduced at level n + 1. We carry on adding
new nodes and links, following these rules, until the condition �∗

n+1 � �∗
n is satisfied. We then

continue to level n + 2 where the next square node is added.

3.1. Examples

A possible starting network is a star network. For a star the betweenness of the rays of the
star (as defined in (2)) is given by Br = N − 1; for the centre of the star the betweenness is
Bc = (N − 1)2. The centre of the star will become congested at the critical packet production rate
�∗

c = (N − 1)/Bc. In figure 2 the maximum betweenness (that is the betweenness of congestion
node n) is plotted against network size. In this case output flow µv is assumed constant for all
nodes. Squares show the maximum betweenness at each step of the growth; circles represent the
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Figure 2. The maximum value of the betweenness centrality as a function of
the number of nodes in (a) a network with total flow that increases with network
size and (b) a network with a flow independent of network size. Solid squares
show the maximum betweenness at each step of the network growth. Circles
represent the lower bounds in Bmax, given by Bmax � (N − 1)�̄ of both (a) and
(b). The solid lines represent the upper bounds: Bmax � (N − 1)/�∗ for (a) and
Bmax � N(N − 1)/(K�∗) for (b).

lower bound of maximum betweenness values, Bmax � (N − 1)�̄. The solid lines are the upper
bounds of the betweenness. The two cases of section 2.2, where expressions for the upper and
lower bounds are derived, are illustrated in figures 2(a) and (b). In figure 2(a) total flow increases
with network size; in figure 2(b) total flow is independent of network size. The lower bound is the
same in both cases: Bmax � (N − 1)�̄. The upper bound in figure 2(a) is Bmax � (N − 1)/�∗;
in figure 2(b) the upper bound is: Bmax � N(N − 1)/(K�∗). At each step in the building of
the network the program searches for a network satisfying �∗

n+1 ≈ �∗
n with the constraint that

�∗
n+1 � �∗

n (or the avalanche will not occur). Finding a network satisfying these conditions was
not always possible, especially in the case of figure 2(a). A network that becomes congested
at the target �∗ does not always exist and becomes harder to find as the network grows. This
explains the divergence of Bmax from the upper limit in figure 2(a). The upper bound is followed
closely in figure 2(b), so the maximum betweenness is approximately proportional to the square
of the network size in this case.

In figure 3 we show histograms of the degrees of the nodes in the network. As in figure 2,
figure 3(a) shows data for a network in which total flow grows with network size; in figure 3(b)
the total flow is independent of network size. In the first case there is not much variation in node
degree. In the second case the degree distribution is skewed and has an exponential shape for
low degree values, so this is a heterogeneous network in terms of node degree.

It is also possible to construct networks in which the output flow µ is not the same for all
nodes. This makes it possible to build networks in which the majority of node failures triggered
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Figure 3. Histograms of the degree k for (a) a network with total flow that grows
with the network size and (b) a network with total flow independent of the
network size.
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D

Figure 4. Catastrophic network with heterogeneous vertices.

by the avalanche happen at nodes having a large output flow; the remainder at nodes having
a small output flow. This simulates man-made networks such as the Internet or power grids
where a main server or an electrical substation has a large output flow and consequently more
‘importance’ in the network. Failure may begin with a node with high centrality (measured by
betweenness), but the next node to fail in the avalanche may have a relatively small centrality,
yet be fundamental to the propagation of the avalanche. In this case the node’s betweenness does
not reflect its importance in the cascade sequence. This behaviour is illustrated in figure 4. Here
nodes failed in the sequence A, B, C, D even though A, C and D can handle twice the flow B can.
The radii of the nodes in the figure are proportional to the square root of their betweennesses.
Clearly the order of failure is unrelated to the betweenness of a node.
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4. Conclusions

We have presented a simple mechanism for building networks designed to fail catastrophically.
The failure of nodes in the network is related to the node’s output flow rate. The technique can
be used to construct networks with nodes that have differing output flows, so we can produce a
network with nodes that have low topological importance (or centrality), but are crucial in the
avalanche-producing catastrophe.

In the case where total flow in the network increases linearly with network size, we find that
the network formed has a small amount of heterogeneity in node degree distribution. This shows
that catastrophic failure does not only occur in highly heterogeneous networks like the Internet.
If all nodes have similar loads and are close to their failure threshold, then cascade failure is also
possible in almost homogeneous networks.

The next stage in the work is to modify the technique so that the generated networks have
more realistic topologies. In addition, our method applies to bufferless networks, we intend to
extend it to account for queueing at nodes in the network as occurs in packet data networks.
There is a need for more rigorous theoretical results to accompany this future work.

There are many other ways to extend our method. Other measures of centrality representing
different flow mechanisms could be used, and routing mechanisms other than shortest path
[13]–[17] might be considered. Another possibility is to allow the creation of edges between
nodes that do not get congested.

Finally, we make the comment that usually, as the name implies, catastrophic failures are
unwanted and efforts are made to prevent their occurrence. However, there are circumstances in
which this property is desirable. In vehicle and shop windows, for example, tempered glass is
used, partly because it is stronger, but also because it has the property of shattering into much
safer small pieces when broken. In cases like this catastrophic failure might be seen as being
‘engineered into’ the material. Another example in which catastrophic failure would be desirable
is that of criminal networks where one person’s capture may result in the collapse of the whole
network. These types of total catastrophic failure are similar to that seen in our current model.
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Topological modelling of large networks

BY RAÚL J. MONDRAGÓN*

Department of Electronic Engineering, Queen Mary University of London,
Mile End Road, London E1 4NS, UK

In a complex network, there is a strong interaction between the network’s topology and
its functionality. A good topological network model is a practical tool as it can be used to
test ‘what-if’ scenarios and it can provide predictions of the network’s evolution.
Modelling the topology structure of a large network is a challenging task, since there is
no agreement in the research community on which properties of the network a model
should be based, or how to test its accuracy. Here we present recent results on how to
model a large network, the autonomous system (AS)-Internet, using a growth model.
Based on a nonlinear preferential growth model and the reproduction of the network’s
rich club, the model reproduces many of the topological characteristics of the
AS-Internet. We also identify a recent method to visualize the network’s topology.
This visualization technique is simple and fast and can be used to understand the
properties of a large complex network or as a first step to validate a network model.

Keywords: Internet; network models; visualization
On

*r.j
1. Introduction

A network can be described as a set of nodes and links. An accurate description
of how the nodes are connected via the links is important because form and
functionality are closely related. Modelling large complex networks has practical
applications. Models can provide realistic network scenarios for simulations and
can be used to predict network evolution. As specific networks have different
characteristics, we tend to avoid general topological models and select properties
to model based on the problem at hand. Here we consider the Internet at the
autonomous system (AS) level.

The Internet can be described at the router or AS level. At the router level, the
nodes and links of the network represent physical entities. The nodes describe
the routers and switches managing the passage of traffic through the network.
The links represent the different physical connections between the nodes,
for example, optical fibres, copper, wires, etc., and have specific directions
between the endpoint nodes. At the router level, a basic topological model of the
Internet should include the geographical position of the nodes and links, the
capacity of the links and the direction that the Internet traffic follows. For
management purposes, the Internet is divided into sub-networks. Each sub-
network adheres to common routing conventions, usually the interior gateway
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protocol. The management of a sub-network and its routers falls under one
administrative entity called an AS that should exhibit to other ASs a coherent
interior routing plan and the destinations reachable through the AS. At the AS
level, the Internet can be considered in an abstract space where the relevant
property is the connectivity between ASs. At this level, we tend to disregard
many physical properties of the network like the geographical location of
the ASs, which could be in different continents, or the direction of the links and
their capacities.

For the Internet, there is considerable data describing it at the router and
AS levels (Cooperative Association for Internet Data Analysis (CAIDA) 2007,
http://www.caida.org). In §2, we introduce some of the topological properties
obtained from the measurements that are used in the development of
network models.

There are two general approaches to model a network (Bu & Towsley 2002;
Dorogovtsev & Mendes 2003; Costa et al. 2007; Krioukov et al. 2007): static
models (Doar 1996; Zegura et al. 1996; Calvert et al. 1997; Winick & Jamin 2002)
based on random networks and dynamical models based on network growth
models. The latter are considered to be the more promising as, if correct, they
can describe the evolution of the network (Willinger et al. 2002; Krioukov et al.
2007). There are two kinds of dynamical models: descriptive models based on
matching various topological properties of a network are used to study which
topological properties give a good description of a network; and explanatory
models that attempt to simulate the core principles and factors responsible for
the network’s structure and evolution, in particular the router network
(Willinger et al. 2002). A proper validation of all the network models is lacking
due to the limited quality of the available measures (Krioukov et al. 2007). In §3,
we describe a dynamical descriptive network model that reproduces many
properties of the AS-Internet.

Section 4 describes a recent visualization technique that can be used to
understand the topological properties of a network or as a first step to validate a
network model and conclusions are given in §5.
2. Topological description of a network

The AS-Internet is described as an undirected graph GZ(N , L), where NZ{ni}
is a finite set of N nodes and LZ{l i} is a finite set of L links. Two nodes are
neighbours if there is a link joining them. The connectivity of the nodes is
described by the adjacency matrix whose aij entry is 1 if node ni is adjacent to
node nj and 0 otherwise. For undirected graphs, aijZaji. The degree k of a node is
the number of neighbours that a node has, kiZ

P
jaij . The degree is the principal

parameter to characterize a network. Two of the simplest properties of a network
are its maximum degree kmaxZmaxfkig, iZ1,., N and its average degree
hkiZ

PN
jZ1 kj=N .

A first step to describe and discriminate between different networks is to
measure the degree distribution P(k); the fraction of nodes in the network with
degree k. For the AS-Internet, Faloutsos et al. (1999) found that its degree
distribution decays as the power law P(k)wkKg, gZ2.1. This means that the
majority of the nodes have few neighbours and there is a small set of nodes that
Phil. Trans. R. Soc. A (2008)
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have a very large number of neighbours. Networks with a power-law decay in
their degree distribution are known as scale free (Barabási & Albert 1999). This
kind of decay is also present in other technological, biological and sociological
networks (Dorogovtsev & Mendes 2003).

The degree distribution gives only partial information about the network
structure. A better description can be obtained from the correlations between the
degrees of different nodes (Pastor-Satorras et al. 2001; Newman 2002). In a finite
network, this correlation is defined by the degree–degree distribution

Pðk; k 0ÞZ 1

N 2

XN
i;jZ1

dki ;kaijdkj ;k 0

* +
; ð2:1Þ

the probability that an arbitrary link connects a node of degree k with a node of
degree k0. In the equation, dij is the Kronecker delta. The degree–degree
correlation can also be described using the conditional probability that a node
with degree k has a neighbour with degree k 0

Pðk 0jkÞZ hkiPðk; k 0Þ
kPðkÞ ; ð2:2Þ

where
P

k 0Pðk 0jkÞZ1. In scale-free networks due to the small number of nodes
with high degree and the finite size of the network, it is not possible from the
network’s measurements to evaluate accurately the degree–degree distribution.
Hence, the structure of the network is characterized using different projections of
the degree–degree correlation.

One way to characterize a network is by comparing it with a random network.
To obtain a meaningful comparison, the random network is restricted such that its
degree distribution P(k) is the same as the network under study (Maslov &
Sneppen 2002). The random network is obtained by randomly reshuffling link pairs
of the original network with the restriction that the reshuffling process should not
change the degree distribution. By comparing a network with its randomized
version, scale-free networks can be classified into assortative, disassortative and
neutral networks (Newman 2002). Social networks tend to be assortative, in which
high-degree nodes prefer to attach to other high-degree nodes and low-degree
nodes to low-degree nodes. Information networks (e.g. the World Wide Web and
the AS-Internet) and biological networks have been classified as disassortative
networks, in which high-degree nodes tend to connect with low-degree ones.

A projection of the degree–degree correlation used to describe the structure of
the network is the average degree of the nearest neighbours. If k is the degree of a
node, then

knnðkÞZ
Xkmax

k 0Z1

k 0Pðk 0jkÞ ð2:3Þ

is its average degree of nearest neighbours (Pastor-Satorras et al. 2001). If knn(k)
is an increasing function of k the network is assortative; if knn(k) is a decreasing
function of k the network is disassortative.

While the AS-Internet is disassortative (Pastor-Satorras et al. 2001; Vázquez
et al. 2002), this property does not describe the explicit connectivity between
the high-degree nodes. The high-degree nodes are also referred to as ‘rich nodes’.
If the rich nodes share many connections the set containing these nodes is known
Phil. Trans. R. Soc. A (2008)
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as the ‘rich club’ (Zhou & Mondragón 2004b). The AS-Internet has a densely
interconnected rich club that plays a dominant role in the functionality of the
network. Realistic models of the Internet should reproduce this hub structure.

If the rich nodes are the r best-connected nodes in the network then their
connection density is measured by the rich-club coefficient (Zhou & Mondragón
2004b) FðrÞZ2Er=ðrðrK1ÞÞ, where Er is the number of links among the top r
richest nodes and r (rK1)/2 is the maximum number of links that these nodes
can share. If F(r)Z0 there is no club at all; if F(r)Z1 the members of the club
form a clique. As a function of the node’s degree, the rich-club coefficient is
fðkÞZ2Ek=ðNkðNk K1ÞÞ (Colizza et al. 2006), where Nk is the number of nodes
with degree equal to or higher than k and Ek is the number of links among these
Nk nodes. The rich-club coefficient is another projection of the degree–degree
distribution as its satisfies (Colizza et al. 2006)

fðkÞZ
2Nhki

Pk max

iZk

Pk max

jZk

Pði; jÞ

N
Pk max

iZk

PðiÞ
� �

N
Pk max

iZk

PðiÞK1

� � : ð2:4Þ

Alternatively, from the definition of the rich-club coefficient,

DLk Z
1

2
ðfðkC1ÞNkC1ðNkC1K1ÞKfðkÞNkðNk K1ÞÞ ð2:5Þ

is the number of links that have at one end a node with degree k and at the other
end a node with degree k0, with k0Rk. In terms of the conditional probability

DLk Z N
XkC1

iZk

PðiÞ
 ! Xk max

k 0Zk

Pðk 0jkÞK 1

2
PðkC1jkÞ

 !
: ð2:6Þ

3. Models

The main property that any model tends to reproduce is the degree distribution
P(k). P(k) apart, there is no agreement on which other statistical properties an
Internet model should be based (Tangmunarunkit et al. 2002; Alvarez-Hamelin
et al. 2005; Rodrigues et al. 2007). In a dynamical network model, starting from a
small seed network, new links and nodes are added to the network until it evolves
to the specified size. The difficulty when developing a dynamical model is that
these should evolve networks to match specific topological characteristics. A
starting point in generating networks with power-law decay in their degree
distribution is to use the Barabási–Albert (BA) model (1999). The model grows a
network using a preferential growth mechanism: starting with a small random
network, the system grows by attaching a new node with m links to m different
nodes that are already present in the system (mZ3 to obtain Internet-like
networks); the attachment is preferential because the probability that a new
node will connect to node i with degree ki is

PðiÞZ kiP
j

kj
: ð3:1Þ
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As a model of the AS-Internet, the BA model has several limitations. The model
generates a power-law degree distribution with exponent gZ3 compared with
gZ2.1 obtained from the measurements. The BA model also creates networks
where the value of the maximum degree kmax is too small compared with the
value measured in the Internet. Nevertheless, the BA model can be extended to
obtain degree distributions with other power-law exponents (Krapivsky et al.
2001; Albert & Barabási 2002; Dorogovtsev & Mendes 2003). However, a
network model based solely on the reproduction of the power-law exponent of the
degree distribution has its limitations as it will not describe the Internet
hierarchical structure (Newman 2002; Pastor-Satorras & Vespignani 2004)
neither will it reproduce the rich-club connectivity of the AS-Internet (Zhou &
Mondragón 2004a).

Equations (2.5) and (2.6) show that a model that recreates the rich-club
connectivity f(k) of the network under study will also generate a good
approximation of the network’s degree–degree distribution P(k, k 0 ) (Krioukov &
Krapivsky 2006; Zhou & Mondragón 2007). It is possible to modify the BA model
to generate networks with a rich club by adding internal links as the network
evolves (Dorogovtsev & Mendes 2000; Bu & Towsley 2002; Bar et al. 2004;
Caldarelli et al. 2004; Zhou &Mondragón 2004a). This addition of internal links in
the model is supported by observations of the Internet evolution (Pastor-Satorras
et al. 2001; Vázquez et al. 2002). Simon (1955) introduced a model based on
the addition of new nodes and the addition of new links between nodes
that belonged to the same class, where a class is the set of nodes with the
same degree. Simon’s model generates networks with a power-law scaling in the
node degree. This growth mechanism allows different growth rates for different
classes of nodes and hence it can create a well-connected rich club (Bornholdt &
Ebel 2001).

The new growth mechanism has two components, a new node attaches with
m old nodes or m new links appear between old nodes. In both cases, the
attachment is done using the BA growth model or a modification of the
BA model. For example, Bu & Towsley (2002) used a generalized linear
preference model with PðiÞZðkiKbÞ=ð

P
jkjKbÞ, where m and b are parameters

that are adjusted to produce the correct power-law decay. The Bu & Towsley
model can create a well-connected rich club but generates networks with a
maximum degree kmax smaller than the one measured in the Internet. It is
possible to increase the maximum degree kmax produced by a model using
the nonlinear preferential attachment (Dorogovtsev & Mendes 2000; Krapivsky
et al. 2001)

PðiÞZ ka
iP
j k

a
j

; aO1: ð3:2Þ

In this case, the rich nodes get all the connections and the degree distribution
P(k) does not decay as a power law.

From the Internet history data, it is known that the probability that a new
node links with a low-degree node follows the linear preferential attachment
given by equation (3.1) (Pastor-Satorras et al. 2001; Vázquez et al. 2002),
whereas high-degree nodes have a stronger ability of acquiring new links than
predicted by equation (3.1) (Chen et al. 2002). Taking into account these
Phil. Trans. R. Soc. A (2008)
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Figure 1. Comparison of topological properties of the AS-Internet and the PFP model (Zhou &
Mondragón 2004a): (a) the degree distribution, (b) distribution of triangles and quadrangles,
(c) distribution of shortest paths and (d ) nearest-neighbour average degree knn.
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observations the nonlinear preferential attachment

PðiÞZ k1Cdln ki
iP
j k

1Cdln kj
j

ð3:3Þ

has been used to model the AS-Internet (Zhou & Mondragón 2004a; Zhou 2006;
Zhou et al. 2007). The function f ðxÞZ1Cd ln x was used because it describes the
strength of the preferential attachment with only one parameter. The parameter
d is set such that maximum degree kmax generated by the model matches the one
observed in the Internet. This model, referred to as the positive-feedback
preference (PFP) model, reproduces many of the properties measured in the
Internet (figure 1). In the model, the rich club is generated by the addition of new
links between old nodes. The degree distribution P(k) obtained from computer
simulations has a pre-asymptotic power-law decay. The exponent of the power
law depends on the addition of new links between old nodes and the preferential
attachment (Zhou 2006). The PFP model is one of the most successful models
describing the Internet (Mahadevan et al. 2005). However, we do not know if
the model can predict the future shape of the Internet. Krioukov & Krapivsky
(2006) noted that the PFP model does not produce degree distributions
with asymptotic power-law decay. The power law observed in the model is pre-
asymptotic and it is the modelling of the rich club that is responsible for this
pre-asymptotic power-law decay.

We finish this section with a cautionary note. In the Internet, the network’s
connectivity can be obtained by direct probing of the network or by the routing
tables. Direct probing is done by recording the nodes that are visited by a packet
Phil. Trans. R. Soc. A (2008)
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Figure 2. (a) The AS-Internet bitmap. (b) A BA network bitmap; the network has the same number
of nodes as the AS-Internet. (c) The router Internet network; the network has 192 244 nodes.
(d ) The characteristic component of the router graph.
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travelling the network. The routing tables describe which nodes a packet should
visit when crossing the network. Both measurement methods have several
limitations as they can create a skewed description of the network (Petermann &
de los Rios 2004). It is also the case that so far, all the measurements of the
Internet are incomplete (Krioukov et al. 2007) so any model based on these
measurements will not represent the actual structure of the whole Internet.
4. Visualization

A method to visualize if a network generated by a model looks similar to the
original network would be a useful tool to validate a model. As networks are very
large, drawing them as a set of discs joined by lines is not helpful; the density of
connections obscures the network features. Recently, a visualization of the
adjacency matrix has been used to distinguish different networks (Chakrabarti
et al. 2007; Guo et al. 2007). As the labelling of the nodes is arbitrary, the idea is
that the label of a node should be related to its degree. Then a linear order
relationship, based on the connectivity, is used to arrange the node labels (Nagle
1966). Using this labelling, the adjacency matrix is plotted as a binary diagram:
white if there is no link between node i and j; black otherwise. The binary
Phil. Trans. R. Soc. A (2008)
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diagram gives an overall impression of the network connectivity. The degree
tuple of a node is defined as fki;0; ki;1;.; ki;jg, where ki,0 is the degree of node i;
ki,j, jZ1,., n is the degree of its neighbours; and j!m if ki, jOki,m. The nodes
are labelled in increasing order of their degree, the node with lowest degree is
labelled 1. If two nodes have the same degree the node with the highest degree
neighbour will rank higher. If the highest degree of the neighbours is the same,
the second highest degree neighbour is used for the ranking and so on until all the
neighbours are considered.

Figure 2a–d shows the plot for the AS-Internet, a model of the AS-Internet
using the BA model, the router Internet and a sketch of a characteristic
component of the router Internet. The bitmaps of the networks look like a fractal
structure constructed by the repetition and scaling of a characteristic component.
The dimensions of the component in figure 2d are related to properties of the
network in the following way. The length of its base is the number of nodes with

degree k given by N
PkC1

iZk PðiÞ. The height of the steps is equal to the number of

nodes with degree k0, again given by N
Pk 0C1

iZk 0 PðiÞ. The tread of the k 0th step is
given by the number of links that have degree k at one end and degree less than k 0

at the other end. The density of points inside the main component is related
to the conditional probability P(k0jk). The density of points in the tip of the
component is related to the rich-club coefficient via DL(k) (see equation (2.5)).

For networks like the Internet, it is known that the degree–degree distribution
P(k 0, k) gives a very good description of the network structure (Mahadevan et al.
2006). What the bitmap diagrams show are features of the whole network that
are related to the degree–degree distribution; our cognitive response is to
integrate this information as patterns. Different patterns correspond to different
networks with different degree–degree distribution. In figure 2, the BA network
was produced to model the AS-Internet. From the scaling of the characteristic
component, it is clear that the BAmodel does not reproduce the scaling behaviour
of the AS-Internet. The density of points in the BA network is more evenly
distributed than in the AS-Internet, reflecting that the BA model generates
neutral networks compared with the AS-Internet which is disassortative. The
router Internet shows a feature not present in the AS-Internet and BA network, a
dense number of points aligned in diagonal lines. This feature is present because
the network is assortative (Echenique et al. 2005), high-degree nodes tend to
connect with high-degree nodes and low-degree nodes with low-degree nodes.
5. Conclusions

The starting point for a model is to describe the network’s degree distribution.
This has been the approach used by many researchers to create a model of the
AS-Internet. However, the extension of these models to reproduce other
characteristics of the network has been erratic. In part, this is because we do
not know which basic topological characteristics a model should reproduce. From
our experience trying to model the AS-Internet, a starting point to obtain a good
model of a scale-free network is to recreate the rich-club connectivity of the
network under study. The rich-club connectivity is simple to measure and a
model that recreates this connectivity will also give a good approximation to the
degree–degree distribution.
Phil. Trans. R. Soc. A (2008)
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The validation of a model usually means the comparison of several topological
characteristics which can be time consuming. The visualization of the adjacency
matrix based on a linear order relationship between the node connectivity is a
good initial step in assessing the validity of a model. It is computationally fast
and cheap.

The author would like to thank the EPSRC EP/C520246/1 for support.
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Building Fragile Networks
Zhijia Huang, Graduate Student Member, IEEE, and Raúl J. Mondragón

Abstract—A simple and successful method to construct catas-
trophic networks is presented. We describe a methods for
generating networks that are designed to fail catastropically by
avalanche-like (or cascade) breakdowns. Starting from a small
seed network and then growing the network, an avalanche is
simulated in reverse. In this way catastrophic failure is ‘built
into’ the final network. The resulting networks are shown to
have marked invariant properties, making it possible to predict
the degree distribution for a given size of network.

Index Terms—Congestion, Catastrophe

I. INTRODUCTION

INFRASTRUCTURES like telecommunication systems,
power transmission grids or the Internet are complex net-

works that are vulnerable to catastrophic failure. A common
mechanism behind this kind of failure is an avalanche–like
breakdown of the network’s components. If a component fails
due to overload, its load will be redistributed, causing other
components to overload and fail. These failures can propagate
throughout the entire network. From studies of catastrophic
failures in different technological networks [1, 2, 3], the
consensus is that the occurrence of a catastrophe is due to
the interaction between the connectivity and the dynamical
behaviour of the network elements.

Here we are interested in packet–oriented communication
networks. In these networks the traffic (dynamics) and the
topology (connectivity) are coupled by the routing mecha-
nisms. The interactions between the network’s connectivity
and its traffic are complex as they depend on many different
parameters, e.g. QoS congestion management (queueing), link
bandwidth, type of traffic, link delay, packet lost, etc. So it
is not straightforward to predict whether a network will fail
catastrophically or not. Furthermore, even if we consider a
very simplified version of a packet network, there are still
fundamental questions about catastrophic behaviour that we
do not have an answer. Questions like: will a network become
unstable and fail catastrophically as its size increases; do
catastrophic networks have specific connectivity properties?
As a first approach to study these questions we consider a
simple model of a packet network, where the basic element
to create a catastrophe is the interaction between the traffic
and topology due to a shortest–path routing mechanism. We
disregard any other detail of the network.

A common technique to obtain a catastrophic network is
to overload different elements of a pre–existing network and
check if a cascading–failure is produced [3, 4, 5, 6]. If
there is no cascade, another network topology is considered
and checked. These approach can be very computationally
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demanding as many different networks need to be tested. Our
approach is to grow a network in such a way as to ensure their
breakdown [7], essentially we follow the cascading breakdown
in reverse.

II. METHODOLOGY

A. Topology and Traffic

To build a catastrophic network we correlate the topology
of the network with the traffic that it carries via a routing
mechanism. The simplest routing mechanism is to deliver the
packets through the shortest paths connecting a source and
destination node. The load on a particular node w can be
approximated by counting the fraction of shortest paths that
pass through the node w. This approximation is given by the
betweenness centrality [7]

C(w) =
∑
s∈V

∑
d 6=s∈V,d 6=w

g(w; s, d)
g(s, d)

, (1)

where g(w; s, d) is the number of shortest paths from source
node s to destination node d which visit node w, g(s, d) is the
number of different shortest paths from s to d and V is the set
containing all the network’s nodes. If the traffic in the network
is distributed evenly throughout all shortest paths, then the nor-
malized betweenness centrality Ĉ(w) = C(w)/

∑
v∈V C(v)

gives the relative usage of node w against the rest of the
network’s nodes.

For simplicity we consider that each node w produces
packets at a rate Λw = Λ for all w, distributed evenly between
the N−1 destinations. The total flow in the network, F (Λ, N),
increases linearly with network size F (Λ, N) = NΛ. Node
w will become overloaded when its packet arrival rate, λw, is
equal to or larger than its packet service rate, µw. The average
number of packets that arrive to node w is [8]

λw = ΛN ¯̀Ĉ(w) =
ΛC(w)
N − 1

, (2)

where N is the number of nodes, ΛN is the number of packets
generated by unit of time by the whole network, ¯̀ is the
average shortest path of the network to account for the average
number of packets that were produced in the past and they are
still in transit and, Ĉ(w) is the proportion of all the packets in
transit that pass through the node w. Equation (2) is obtained
by using the property that

∑
w∈V C(w) = N(N − 1)¯̀ and

relates the topology of the networks, via C, with the traffic
that it carries via Λ.

B. Node Failure

Node w will become overloaded when the traffic arrival
rate λw is equal to or larger than the node’s service rate, µw.
Previous work shows that this congestion model can be used to
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study the robustness of mission critical networks [9]. As all the
nodes produce the same amount of traffic, from equation (2),
the condition of congestion is

Λ∗ ≥ µw(N − 1)
C(w)

. (3)

C. Cascading failure

We consider overload as the cause of node failure. When a
node overloads, the node, its links, and the traffic produced
by the node are removed from the network. Then routing
mechanism redistributes the remaining traffic throughout the
network. The load on other nodes might increase sufficiently
for them to get overloaded. These newly overloaded nodes and
their links are also removed from the network and the traffic
load is redistributed again. This process continues until no
further nodes are overloaded. In a large cascade, the network
will break down into many disconnected sub–networks.

The cascading condition can be expressed in terms of the
network’s connectivity via the betweenness centrality. If ni

f

and ni+1
f are two nodes that fail one after the other and at the

same traffic load Λ∗ then from equation (3) we have that

C(ni+1
f ) = C(ni

f )

[
µni+1

f
(N i+1 − 1)

µni
f
(N i − 1)

]
, (4)

where N i is the size of the sub–network where ni
f belongs to

after removing node ni
f and its links.

III. GROWING CATASTROPHIC NETWORKS

To grow a catastrophic network, we follow the avalanche
process in reverse [7]. Starting from a “seed” network, we
build step by step the catastrophic network. At each step, we
first add a new ‘failing’ node ni

f (see Fig. 1). This node
is connected to the existing network A that contains NA

nodes. We also introduce the sub–network B with NB nodes
and connect ni

f to this sub–network. There are no direct
connections between the network A and sub–network B, that
is ni

f is a bridge between A and B. The main problem is to
finding out the set of connections between ni

f and A and ni
f

and B such that, if the load Λ∗ is given, then ni
f is overloaded.

Suppose that at the ith–step of the reverse–avalanche process
the node ni

f fails when C(ni
f ) = µni

f
(NA − 1)/Λ∗. In this

case ni
f overloads if the average packet–production load is

Λni
f

= Λ∗. It is feasible that at the next step of the reverse–
avalanche process it is not possible to find a network that has
a failing node ni+1

f for the given Λ∗. Though it is possible that
the node ni+1

f will fail for Λni+1
f
≥ Λni

f
. If we now consider

that the average packet load for all the nodes is Λni+1
f

then we
will guarantee that at the step ith and (i+1)th the nodes ni

f and
ni+1

f will overload. In other words to construct the avalanche
in reverse requires an increase on the average packet load.
This observation implies that

C(ni+1
f )−

µni+1
f

(NA +NB)

µni
f
(NA − 1)

C(ni
f ) ≤ ε. (5)

Network A
Network Bnf

step i

Network A
Network Bnf

Network A
Network Bnf

step i+1

’

ca
sc

ad
e grow

th

Fig. 1. Schematic representation of the method to build the cascade in
reverse.

where we have used equation (3), ε ≥ 0 and that the size of
the network nth+1 step is NA +NB + 1. At each step of the
inverse–cascade process the aim is to find the solution that
minimizes ε.

The betweenness centrality of node ni+1
f can be written as

C(ni+1
f ) = CA + CB +NA +NB + 2NANB , (6)

where the term NA is the number of shortest paths that start
from ni+1

f and end in A (similarly the term NB), the term
2NANB is the number of paths that start in A and end in
B (and vice versa) which correspond to NA sources going
to NB destinations. The term CA are the number of paths
that start and end in A and they go through node ni+1

f ,
and similarly for CB . To obtain the desired C(ni+1

f ), which
satisfies equation (5) and minimizes ε, one could either change
the linkage between A and ni+1

f or change the topology
of B and its linkage to ni+1

f . There are three variables in
equation (6) associated with these changes: CA, CB , and NB .

It is possible to find a bound for NB , the number of nodes in
sub–network B. The maximum size of B occurs when CA =
0. This happens if there is only one link between A and ni+1

f

and B forms a star network with ni+1
f at its center. In this

situation CB = NB(NB − 1) . Using equations (5) and (6)

N2
Bα+NB(2NAα−C(nf )µni+1

f
)+NA(α−C(nf )µni+1

f
) ≤ ε.

(7)
where α = (NA−1)µni+1

f
For the networks that we considered

max(NB) ≤ 4. In this case we evaluated CB for all possible
networks of size less equal to NB and created a lookout table.
This is an efficient way to evaluate the contribution of CB to
C(ni+1

f ).

A. The Branch and Bound Search Algorithm

To obtain the minimal value of ε, we need evaluate how
different connection configurations between the network A and
node ni+1

f contribute to C(ni+1
f ). If the nodes in A are labelled

as ni then the links of these nodes with ni+1
f can be expressed

as the binary sequence L = {l1, . . . , lNA
} = {0, 1, . . . , }

where li = 1 if node ni in A is connected with ni+1
f , otherwise

li = 0. The number of different binary sequences grows
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1111

0111 1011 1101 1110

0011 0101 1001 0110 1010 1100

0001 0010 0100 1000

0000

Fig. 2. Solution space represented as a tree for the case when the network A
has four nodes

exponentially fast, as 2NA . To search which of the binary
sequence minimizes ε we use a branch and bound algorithm
based on the following observation: If all the nodes in A where
directly connected to ni+1

f then, for any pair of nodes in A
which are not directly connected, there will be at least one
shortest path between these two nodes that passes through
ni+1

f . The length of this path is 2 hops. This connectivity
between A and ni+1

f gives the maximum possible value of CA,
removing any link between A and ni+1

f will reduce CA. To use
this property in the search for the minimal ε, we use the binary
sequence L to organise the space of solutions as a rooted tree.
The root corresponds to the solution where all nodes of A
are linked to ni+1

f . The branches of the tree are explored by
removing connections between A and ni+1

f . Figure (2) shows
an example of the solution space tree for NA = 4. The branch
and bound algorithm to solve one step of the inverse cascade
is given below.
Algorithm Inverse–Cascade

1: Start with the case that all the nodes in A are con-
nected to ni+1

f (i.e. CA is maximum and {li, . . . , lNA
} =

{1, . . . , 1}.
2: Evaluate CA, initialize i = 1, j = 1
3: Disconnect ni from ni+1

f , i.e. li = 0
4: for all sub–networks B of size ≤ max(NB) do
5: evaluate min(ε) using eqs.(6)-(7)
6: end for
7: if min(ε) ≥ 0 then
8: if min(ε) ≈ 0 then
9: stop, solution found

10: end if
11: Search Branches: remove link lj where j < i
12: j ← j + 1
13: goto step 3 unless there are no more branches to select
14: else
15: Cut Branches: Deleting links between network A and

ni+1
f will only decrease C(ni+1

f ). So sub-branches
under this branch will not produce high enough values
of C(ni+1

f ), which is not necessary to investigate.
16: Connect ni back to node ni+1

f .
17: i← i+1 return to step 2 unless there are no more links

to select i.e. i = NA then stop
18: end if
The output of the algorithm is the sequence L and the
connectivity of the sub–network B.
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Fig. 3. The critical load as the network size increases for two different seed
networks.

IV. RESULTS

From equation (3),the connectivity of the seed networks de-
fines the traffic production rate Λ∗0 when congestion happens.
When building the catastrophes, our target is to construct a
network that at each step of the avalanche the congestion load
is Λ∗0. However this is not always possible. When building the
catastrophic networks, it is possible that the congestion only
occurs at a larger loads than Λ∗0. This opens the question if we
can build a catastrophe network at any given Λ∗. Fig. 3 shows
the value of Λ∗ as the catastrophic network is build for a four
and five star-shape seed network. For the four–star network the
initial congestion load is Λ∗ = 0.25 and the figure shows that
to sustain the avalanche as the network grows, the congestion
load has to increase. However for the five–star network with
Λ∗ = 0.2 it is possible to construct a catastrophic network
that at each step fails this load. In general we noticed that if
the congestion load of the seed network is “high”, λ∗ ≥ 0.25,
then to build a catastrophic network the congestion load has
to increase.

For the case of networks that fail at each step at the
same load Λ∗, we observed that there is a special family of
catastrophic networks that their connectivity follows a pattern.
Fig. 4 shows (a) the betweenness centrality and (b) the degree
distribution of a network at two different steps of its growth.
By construction the nodes are split into two groups, the
nodes that will congest and trigger the avalanche and the
rest of the nodes. We noticed that this distinction between
the nodes is also reflected in the betweenness centrality and
the degree distribution of the nodes. In the figure, the nodes
with highest value of degree or centrality correspond to the
failure nodes. We also noticed that the centrality of these
nodes tends to increase with the network size as C(w) ≈
exp(w/A(N))+Cmin, where A(N) is an increasing function
of N and Cmin = N − 1 which is the minimum betweenness
that a node can have (see Fig. 4(c)). From the catastrophic
networks that we constructed we were not able to determine
if A(N) tends to a constant or grows linearly as the size N
of the network increases. From Eq. (2) and if the betweenness
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grows exponentially then

λw = Λ
exp(w/A(N)) +N − 1

N − 1
≥ µw. (8)

If A(N) tends to a constant for large N then the arrival rate at
a node λw →∞ implying that after a certain size the networks
will fail catastrophically. If A(N) ≈ a + bN grows linearly
with N then λw → Λ ≥ µw as N → ∞. If µw = 1, then
the catastrophe will occur if Λ = 1 and if the network is fully
connected. If µw ≥ 1 it is still an open question if catastrophic
networks occur for large N .

For the node’s degree Fig. 4(b) shows that the degree for
failure and non-failure nodes change linearly with network
size: the former increases with network size and the latter
decreases. These two trends follow the lines node degree =
α±node number/2. Using different seed networks and check-
ing this linear behaviour at different stages of the avalanche
we obtained that α ≈ γN and β ≈ 0.5 where γ is a constant
and N is the number of nodes in the network. In Fig. 4(d)
one of the data sets is rescaled to show how the degree of the
nodes follow an invariant as the network grows.

This observation hints that it is possible to construct very
large catastrophic network by only specifying the degree and
betweenness centrality. Notice that this results covers only
one family of potential catastrophic networks. It is possible
to create a catastrophic network that it is not evident how the
failure/non-failure nodes are related to each other.

V. CONCLUSION

This is a new approach to study the problem of cascade
failure in networks. Instead of taking a given network and
test if and how it will fail catastrophically we construct the
catastrophic networks. With our method we have control on
the critical load that produces the cascade and the number of
steps that the cascade has.

These networks can be very large and have a predetermined
degree distribution. We believe that extending this approach
will provide further important insights into how topology
and traffic flow are linked to catastrophic failure. We have
concentrated on packet data networks, but our results also
apply to other infrastructure networks.

Various extensions to the work are being considered. Cur-
rently our catastrophic networks cascade down to the original
seed network, typically a small star. This is unlike cascade
failure in real networks, where the tendency is for the network
to break down into disconnected subnetworks. To account for
this we intend to use a number of cores simultaneously in
generating networks in the future.
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